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e Standard normal distribution: A standard normal distribution is a

normal distribution with zero mean and unit variance, given by the pro-
bability density function (here n(z) = N’(z), where N (z) is the cumulative
standard normal distribution function)

Zero-coupon bond (discount bond): The value of a T-maturity zero-
coupon bond at time ¢ is

D(t,T) =exp <— /T rsds> ,

where r is a non-stochastic instantaneous interest rate (short rate). If r is

stochastic, then
T
D, T) =E, {exp —/ rsds| .
i

The binomial model: Suppose that the stock is worth Sy today and
either USy or DSy after time At, where U > 1 > D > 0 denote up-
and down-movements. The risk-neutral probability of an increase in stock
price is expressed as

67"At —D

P=TD

The dynamics of the risk-free asset: Suppose that r» > 0 is the instan-
taneous risk-free interest rate. Then the dynamics of an asset that earns
rate r can be expressed as

dBt == TBtdt, B() >0
where By > 0.

‘Wiener process: In continuous time, we write

th = et\/glf,
and in discrete time
AWt = €V AL.
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e The dynamics of a risky asset under geometric Brownian motion:
Suppose thet p € R is the expected price appreciation and o > 0 the ins-
tantaneous volatility, € 1.i.d. standard normal random variable, and Sy > 0
the initial stock price. If the stock price is assumed to evolve according to
geometric Brownian motion, we can write

ds; = /J;Stdt -+ O'Stth, Sg = 8,8 >0 (1)
where

AW, = e,Vdt.

e Analytical solution for the future stock price under geometric
Brownian motion: Suppose that Sy > 0. Then

S = Spexp { <u - %az> T+ a\/fe} .

o Black-Scholes equation: Suppose that C(¢, S(t)) is the price of a European-
type derivative asset written on stock S(t). Then, with the assumptions of
the Black-Scholes model, the price of the derivative asset satisfies the fol-
lowing differential equation whenever C' is twice differentiable with respect
to S and once with respect to i:
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e Black-Scholes formula: With the assumptions of the Black-Scholes mo-

del, the solution for a European cail option is

Ot s) = se” MTIN(dy (t,5)) — Ke " T"IN(dy(t, 5)),
with N(z) denoting cumulative standard normal distribution and
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